II
TECHNIQUE
BANCAIRE : Éléments de
mathématiques Financières
I Principes
Les calculs financiers sont un outil permettant de renseigner
efficacement un client. Le chargé de clientèle pourra, sans difficulté,
indiquer à son client l’effort d’épargne nécessaire pour se constituer un
capital, renseigner sur le calcul des intérêts, indiquer la durée de placement
nécessaire pour obtenir les capitaux souhaités.
II Méthode
A. Intérêts simples
et intérêts composés
On parle d’intérêt simple quand les intérêts sont calculés
uniquement sur le capital initial. En d’autres termes les intérêts ne
produisent pas eux-mêmes des intérêts contrairement aux intérêts composés.
Intérêts simples
I = C * i * n
avec :
I somme des intérêts
C capital
i le taux d’intérêt
n la durée du
placement
Intérêts composés
C = Co (1 + i)n
I = C – Co = Co [(1 + i)n –
1]
Co : capital
d’origine
B. Cas particuliers
Dans certains cas (Livret A, Livret Bleu…), le calcul des
intérêts s’effectue par quinzaines.
Le principe de calcul implique que les sommes placées ne
procurent des intérêts que si elles demeurent sur le compte au moins 15 jours
consécutivement.
c Pour les retraits
Un retrait le 14 du mois sera comptabilisé en date de valeur le
01 du mois. Un retrait le 18 sera lui comptabilité en date de valeur du 16 du
mois courant.
c Pour les dépôts
Un dépôt effectué le 13 du mois produira des intérêts à compter
du 16 du même mois, un dépôt effectué le
20 produira des intérêts à compter du 01 du mois suivant.
C. Taux proportionnel
et taux équivalent
Pour calculer des intérêts sur une période inférieure à un an,
on doit transformer le taux annuel en un taux périodique (mensuel, trimestriel,
semestriel).
On utilisera le taux proportionnel aux calculs en intérêts
simples :
1. Taux proportionnel
trimestriel (taux annuel de 4 %)
Taux annuel/4 = 1%
Un taux trimestriel de 1 % est équivalent en intérêt simple à un
taux annuel de
4 %.
2. Taux équivalent
(intérêts composés)
Taux périodique équivalent = (1+ taux annuel) 1/durée de la période – 1
D. Valeur acquise et
valeur actuelle d’une suite d’annuité, taux proportionnel ; taux équivalent
Aucun commentaire:
Enregistrer un commentaire